
2007 JavaOneSM Conference | Session TS-1205 |

TS-1205

The Sun Java™ Real-Time
System Meets Wall Street
Jim Clarke—Principal Engineer
Jim Connors—Systems Engineer

Sun Microsystems, Inc.
http://java.sun.com/javase/technologies/realtime.jsp

2007 JavaOneSM Conference | Session TS-1205 | 2

Learn how the Java Real-Time System
(Java RTS) can enable financial program
trading systems to execute time-critical
trades without interruption from the
Garbage Collector or other Interrupts.

Applying Sun Java Real-Time System to
High-Performance Financial Systems
Real-time development isn’t limited to C/C++

2007 JavaOneSM Conference | Session TS-1205 | 3

Agenda

The Problem?
Overview of RTSJ—JSR 001, JSR 282
Overview of the Java Real-Time System 2.0
Demonstration Design Overview
Live Demonstration
Lessons Learned and Recommendations

2007 JavaOneSM Conference | Session TS-1205 | 4

Agenda

The Problem?
Overview of RTSJ—JSR 001, JSR 282
Overview of the Java Real-Time System 2.0
Demonstration Design Overview
Live Demonstration
Lessons Learned and Recommendations

2007 JavaOneSM Conference | Session TS-1205 | 5

Problem

● Java platform GC, other applications/threads,
and system interrupts cause delays when
executing trades

GC/Interrupt

R
es

po
ns

e
Ti

m
e

2007 JavaOneSM Conference | Session TS-1205 | 6

Impact—Limit Buy Order
$$

Limit
Price

Execution
Price

Time

Loss

2007 JavaOneSM Conference | Session TS-1205 | 7

Impact—Stop Loss Order/Limit Sell

$$

Stop
Loss
Price

Execution
Price

Time

Loss

2007 JavaOneSM Conference | Session TS-1205 | 8

GC Pauses Are Unpredictable

Threads

Time

Priority

GC Standard
Heap

Garbage Collection Can Happen at
Unexpected Times—Leading
to Missed Deadlines

Garbage Collection Is Very Difficult to
Predict Accurately—But You Can Expect
That It Will Happen at the Worst Time

Deadlines

Unplanned Event
Threads Doing Desired Work

Thread Pause Due to GC

2007 JavaOneSM Conference | Session TS-1205 | 9

Why Real-Time for Java Technology ?

● Predictability
● Real-Time in this context does not mean “super-fast”—

rather, it means “respond within a predictable time”
● Architecture flexibility

● Instead of a flat topology for requests, discriminate
between more and less important events

● Handle most important events first, allow others to
complete when possible—all on one system

● Dealing with the Real-World
● “Stuff happens”—Java Real-Time System helps you

deal with it

2007 JavaOneSM Conference | Session TS-1205 | 10

Agenda

The Problem?
Overview of RTSJ—JSR 001, JSR 282
Overview of the Java Real-Time System 2.0
Demonstration Design Overview
Live Demonstration
Lessons Learned and Recommendations

2007 JavaOneSM Conference | Session TS-1205 | 11

RTSJ Technical Highlights

● The Real-Time Specification for Java (RTSJ)
JSR 001 (1.0), JSR 282 (1.1)
● A standard that defines how real-time behavior must

occur within Java technology
● Attributes

● Not a silver bullet or magic wand, but a much
sharper tool

● Higher-level, portable, address temporal concerns
such as costs and deadlines

● 100% Java technology
● Developed by many experts

2007 JavaOneSM Conference | Session TS-1205 | 12

RTSJ System Model

Non real-time
● Regular Java code
 threads
● Maximized throughput

Soft real-time
● Realtime threads
● RT GC

Data Transfer Queues

Hard real-time
● NoHeapRealtime threads
● Bounded jitter

2007 JavaOneSM Conference | Session TS-1205 | 13

New Memory Management Models

● What distinguishes each memory model
is the life-cycle of objects

● Memory models defined by RTSJ
● Heap

● GC’d
● Immortal

● Not GC’d, never reclaimed
● Scoped

● Not GC’d, but reclaimed when no
longer used

2007 JavaOneSM Conference | Session TS-1205 | 14

RT Analogy: Commuter Highway

Metering Light

Toll

Commuter Highway Uses Access Control via Metering Lights
to Maintain Traffic Flow—or Throughput

Many Production Systems Use a Similar Approach by Minimizing
the Load on Servers to Ensure Throughput via Less “Traffic”

2007 JavaOneSM Conference | Session TS-1205 | 15

RT Analogy: Real-Time Threads

Metering Light

Toll
Real-Time Threads Are Like the Commuter Lane (Assume You
Get On and Off w/out Merging)—Your Travel Time Is Better Here

However, This Lane May Be Shared With Other Cars (Threads) and
It Can Fill Up and Slow Down if Too Much Traffic Happens Here

2007 JavaOneSM Conference | Session TS-1205 | 16

RT Analogy: No-Heap Real-Time
Threads

Metering Light

Toll

RTSJ Allows You to Use NHRT, RTT, and Normal Threadsall
on the Same System to Meet Your Requirements—But Not
That for a Given “Highway” (System), Only So Many Cars (Work)
Can Pass Through the System

No-Heap Real-Time Threads Are Like Your Own Personal Lane;
You Can Predict Your “Trip” Precisely With No Interruptions

2007 JavaOneSM Conference | Session TS-1205 | 17

Agenda

The Problem?
Overview of RTSJ—JSR 001, JSR 282
Overview of the Java Real-Time System 2.0
Demonstration Design Overview
Live Demonstration
Lessons Learned and Recommendations

2007 JavaOneSM Conference | Session TS-1205 | 18

Java RTS Usage Options

Soft Real-Time Hard Real-Time

Less
Complex

More
Complex

RTGC

RTGC

RTGC

RTGC

RTGC

Realtime Thread

Realtime Thread

Realtime Thread

Realtime Thread

Memory Management

Memory Management

Memory Management

NHRT

NHRT Scheduling

2007 JavaOneSM Conference | Session TS-1205 | 19

Java RTS—RTGC

● Goal: Smallest latencies for high priority
GC’d threads
● Defer GC work for high-priority threads

● Advantages
● Scalable: no issues with multi-processor support
● Flexible: works with different policies for low priority

RT threads
● GC overhead can be paid by these threads if total memory

consumption goes up
● More efficient policies possible: could pause certain threads
● Simpler policies like running the GC on a dedicated CPU

Apply policy to garbage collection

2007 JavaOneSM Conference | Session TS-1205 | 20

Programming Soft Real-Time
in Java RTS

Thread T = new Thread(myRunnable);

RealtimeThread RT =
 new RealtimeThread(..., myRunnable);

Step #1:
 Replace:

 with

Then, Step #2…
!There is no step #2!

2007 JavaOneSM Conference | Session TS-1205 | 21

● Download the Java RTS plug-in, and:

● …from the NetBeans IDE

NetBeans™ Integrated Development
Environment (IDE) Support

> Cross-develop on the host
> Deploy over the network

> Execute on the target

2007 JavaOneSM Conference | Session TS-1205 | 22

Further Reducing Latencies
and Jitter in Java RTS

● Class pre-initialization
● Load and initialize all critical classes at initialization

● Class pre-compilation
● Pre-compile all critical code at initialization

● Coupled with Solaris capabilities…
● Processor sets

● Bind critical tasks to dedicated CPUs
● Interrupt sheltering

● Field hardware interrupts on non-critical CPUs

2007 JavaOneSM Conference | Session TS-1205 | 23

Java Real-Time System 2.0—Features

● Java Platform, Standard Edition (Java SE
platform) 5.0

● Solaris™ Operating System (Solaris OS) 10
● x86, x64, and SPARC® Architecture
● Real-Time Garbage Collector
● NetBeans Module

2007 JavaOneSM Conference | Session TS-1205 | 24

Agenda

The Problem?
Overview of RTSJ—JSR 001, JSR 282
Overview of the Java Real-Time System 2.0
Demonstration Design Overview
Live Demonstration
Lessons Learned and Recommendations

2007 JavaOneSM Conference | Session TS-1205 | 25

Demo Architecture

JMX API

JMS = Java Messaging Service
JMX = Java Management Extensions

JMS APIQuote
Publisher

Trading
System

Demo GUI

2007 JavaOneSM Conference | Session TS-1205 | 26

Demo Architecture—
Quote Publisher

JMS API
Stock Quotes
(XML)

RTNHRT

UpdateGenerator QuotePublisher

Quote
Publisher

Blocking
Circular
Queue

Quote
Publisher

2007 JavaOneSM Conference | Session TS-1205 | 27

Demo Architecture—
Trading System—Non-Real-Time Version

Trading
System

MarketManager OrderManager

Thread Thread

Market
Data

Market
Data

JMX API
Notification
Trade Data
(XML)

JMS API
Stock
Quotes
(XML)

2007 JavaOneSM Conference | Session TS-1205 | 28

Demo Architecture—
Trading System—Real-Time Version

Trading
System

MarketManager OrderManager

Market
Data

Order
Data

JMX API
Notification
Trade Data
(XML)

JMS API
Stock
Quotes
(XML)

RT NHRT

Immortal Memory

2007 JavaOneSM Conference | Session TS-1205 | 29

Demo Architecture—
JavaFX™ Technology

Form Follows Function TS-3420
Wed. 4:10PM and Thurs. 1:30PM

Trading
System

JavaFX Script

Mbean:
java.lang:type=GarbageCollector

MBean:
java.lang:type=MemoryPool

Notification:
com.sun.oss.trader.mq:type=TradeManagement,name=LimitStopTrades

Notification:
com.sun.oss.trader.mq:type=OnMessage,name=OrderManager

Trades

Performance

GC

Memory Pool

2007 JavaOneSM Conference | Session TS-1205 | 30

Agenda

The Problem?
Overview of RTSJ—JSR 001, JSR 282
Overview of the Java Real-Time System 2.0
Demonstration Design Overview
Live Demonstration
Lessons Learned and Recommendations

2007 JavaOneSM Conference | Session TS-1205 | 31

Demo Results (Non-Real-Time Version)

● The market moves fast and continuously
● Price thresholds are missed by the order manager:

● Limit orders cannot be traded (very bad situation)
● Stop orders trade beyond their desired value

(lose money)
● Graph dips down into the negative region =

lost money!

2007 JavaOneSM Conference | Session TS-1205 | 32

Demo Results (Real-Time Version)

● The market moves fast and continuously
● Price thresholds are met:

● Limit orders always trade (very good)
● Stop orders trade at their set values

(no money lost)
● Graph stays even (flat) = no missed trades,

no money lost

2007 JavaOneSM Conference | Session TS- 1205 | 33

DEMO
RT Financial Demo

2007 JavaOneSM Conference | Session TS-1205 | 34

Agenda

The Problem?
Overview of RTSJ—JSR 001, JSR 282
Overview of the Java Real-Time System 2.0
Demonstration Design Overview
Live Demonstration
Lessons Learned and Recommendations

2007 JavaOneSM Conference | Session TS-1205 | 35

Lessons Learned

● Allocate time for training
● Hardware/OS

● Many laptop BIOS’es do not fully expose access to APIC
● No high-resolution timer

● Multi-CPU/core machines strongly recommended
● Solaris software RBAC and Java RTS

● Bash(1) shell not RBAC aware, must use pfexec
● Memory Usage and Access, plan!

● Where, immortal, heap, scoped?
● Calculate runtime memory usage
● Caution when using immutable objects, like String

2007 JavaOneSM Conference | Session TS-1205 | 36

Lessons Learned—
NoHeapRealtimeThread Programming

● IllegalAssignmentError/MemoryAccessError
● Not caught by default
● Generic try/catch around suspicious code

● Java library classes
● Many cause memory errors inside NHRTs
● Need to re-invent the wheel

● Java Message Service (JMS) currently not a
good candidate for NHRT
● Need RT enabled JMS API???

● Try Running RealTimeThreads at a priority higher
than GC Thread before jumping into NHRT

2007 JavaOneSM Conference | Session TS-1205 | 37

More Java RTS Information

● The RTSJ Specification
● http://www.rtsj.org/specjavadoc/book_index.html

● Sun’s Java RTS Page
● http://java.sun.com/javase/technologies/realtime.jsp

● Java RTS Article by Eric Bruno
● http://www.devx.com/Java/Article/33475

● Java RTS Articles by Greg Bollella
● http://ddj.com/dept/java/193402050
● http://java.sun.com/developer/technicalArticles/Intervie

ws/Bollella_qa2.html

http://www.rtsj.org/specjavadoc/book_index.html

2007 JavaOneSM Conference | Session TS- 1205 | 38

Q&A
Jim Clarke jim.clarke@sun.com
Jim Connors jim.connors@sun.com

2007 JavaOneSM Conference | Session TS-1205 |

TS-1205

The Sun Java Real-Time System
Meets Wall Street
Jim Clarke—Principal Engineer
Jim Connors—Systems Engineer

Sun Microsystems, Inc.
http://java.sun.com/javase/technologies/realtime.jsp

